Neuromarketing for childs, Decision Making, Capitalism, Value and Social Value of Money, Universal Income - EEG Data Analysis, CSD, LORETA, Wavelets, ICA, PCA

18/01/2024 08:53:32 Author: Jackson Cionek

Neuromarketing for childs, Decision Making, Capitalism, Value and Social Value of Money, Universal Income - EEG Data Analysis, CSD,  LORETA, Wavelets, ICA, PCA


Value and Social Value of Money
Value and Social Value of Money

El uso de EEG en investigaciones experimentales sobre neuromarketing para niños, toma de decisiones, capitalismo, valor y valor social del dinero, y renta universal puede ser muy variado e innovador. 


Neuromarketing para Niños: Podría involucrar la presentación de diferentes tipos de publicidad o productos a los niños mientras se monitorean con EEG. El objetivo sería entender qué elementos (colores, personajes, músicas) generan un mayor compromiso o activación de áreas cerebrales relacionadas con la atención y el placer. Es fundamental respetar las directrices éticas, especialmente considerando la vulnerabilidad del público infantil.


Los experimentos aquí podrían involucrar la presentación de escenarios de decisión (por ejemplo, elegir entre diferentes productos o soluciones a un problema) mientras se monitorean las respuestas cerebrales. El enfoque sería identificar patrones de actividad cerebral que corresponden a diferentes procesos de toma de decisiones, como la evaluación de riesgo versus recompensa.


Enseñar a los niños sobre el capitalismo con un enfoque en los servicios y la preservación ambiental implica una educación integral que abarca la economía, la sostenibilidad y la responsabilidad social.

Las investigaciones en esta área podrían explorar cómo los individuos reaccionan a diferentes aspectos del capitalismo, como la publicidad, mensajes sobre el consumo, o incluso simulaciones de experiencias de compra y venta. El EEG podría ayudar a entender cómo los conceptos capitalistas afectan la actividad cerebral, especialmente en áreas relacionadas con la motivación y recompensa.


Valor y Valor Social del Dinero: Los experimentos podrían diseñarse para evaluar cómo las personas reaccionan a diferentes cantidades de dinero o a diferentes usos del dinero (gasto personal vs. donación para causas sociales), observando las áreas cerebrales activadas en estos procesos.


Renta Universal: Un diseño experimental interesante podría ser la simulación de escenarios donde los participantes reciben una renta básica universal, comparando sus reacciones cerebrales con otros escenarios donde tal renta no está presente. El objetivo sería explorar cómo la seguridad financiera (o su falta) afecta la actividad cerebral.


EEG Data Analysis: EEG is a method to record electrical activity of the brain. Analysis of EEG data involves processing the raw signals to extract meaningful information. This typically includes noise reduction, artifact removal, and identifying brain activity patterns related to specific tasks or states.


CSD (Current Source Density): This is a technique used in neurophysiology to estimate the current density distribution in the brain. CSD analysis helps in localizing the sources of electrical activity and is often used to enhance the spatial resolution of EEG data.


LORETA (Low-Resolution Brain Electromagnetic Tomography): LORETA is a computational method used to localize brain electrical activity based on EEG data. It's a type of inverse problem-solving approach that estimates the three-dimensional distribution of electrical activity in the brain.


Wavelets: In EEG analysis, wavelet transforms are often used for time-frequency analysis. This allows the decomposition of EEG signals into different frequency bands, which is crucial for understanding the dynamic changes in brain activity.


ICA (Independent Component Analysis): ICA is a computational method used in EEG analysis to separate mixed signals into their independent components. In EEG, it's commonly used for artifact removal (like eye blinks or muscle movements) and for isolating sources of brain activity.


PCA (Principal Component Analysis): PCA is another statistical method used in EEG data analysis. It's primarily used for dimensionality reduction, helping to simplify the data by reducing the number of variables and highlighting the most important patterns in the data.


Each of these methods contributes to a more accurate and detailed understanding of brain activity as measured by EEG. They are often used in combination to address the complexities of brain signal analysis. For instance, one might use ICA to remove artifacts, followed by CSD to improve spatial resolution, and then apply LORETA for source localization. Wavelets can be used for detailed time-frequency analysis, and PCA might be applied for overall data simplification and pattern recognition.


The choice of methods depends on the specific goals of the EEG study, such as whether the focus is on localizing brain activity, analyzing the frequency content of the signals, or both.


BESA

 1/2 | EEG Data Analysis

EEG Data Analysis Analyzer:Analysis software for EEG ERP P300 N400 research, Video integration, Raw Data Inspection, interactive ICA, FFT, Wavelets, LORETA, MR and CB artifact correction, Integration for eye-tracking data, CSD Current Source Density, Grand Average, Grand Segmentation, ERS/ERD Event-related synchronization and desynchronization, FFT Fast Fourier Transform, FFT Inverse, ICA Independent Component Analysis, Inverse ICA,Butterworth filter, Linear Derivation, LORETA for source analysis, Ocular Correction ICA based on ICA, PCA Principal Component Analysis, Segmentation,Topographic Interpolation, t-Test paired and unpaired t-Tests, Wavelets, Wavelet Extraction FunctionalBESA Research:Data review and processing for reviewing and processing of your EEG or MEG data. Digital filtering: high, low, and narrow band pass, notch. Interpolation from recorded to virtual and source channels.Automated EOG and EKG artifact detection and correction. Advanced user-defined instantaneous artifact correction. Spectral analysis: FFT, DSA, power and phase mapping. Independent Component Analysis (ICA): Decomposition of EEG/MEG data into ICA components that can be used for artifact correction and as spatial sources in the source analysis window. Connectivity analysis, a unique feature for viewing brain activity, transforms surface signals into brain activity using source montages derived from multiple source models or beamformer imaging. This allows displaying ongoing EEG/MEG, single epochs, and averages with much higher spatial resolution. Source montages and 3D whole-head mapping. ERP analysis and averaging. Source localization and source imaging. Individual MRI and fMRI integration with BESA MRI and BrainVoyager. Source coherence and time-frequency analysis

BESA 2/2 | EEG Data Analysis

Neuromarketing Speakers | Decision Making

Decision Making

Neuromarketing for childs | Decision Making

Decision Making

Capitalism in the 21st century | NeuroEconomics 

Money Creation Value and Social Value of Money Capitalism in the 21st century

Value and Social Value of Money | NeuroEconomics 

Money CreationValue and Social Value of MoneyCapitalism in the 21st century

Universal Income | NeuroEconomics

 





Thumbnail

22:45:00 - 23:59:00

Money CreationValue and Social Value of MoneyCapitalism in the 21st centuryChicago Boys


Thumbnail

06:05:00 - 07:31:00

Decision Making


Thumbnail

00:00:00 - 02:32:00

EEG Data AnalysisAnalyzer:Analysis software for EEG ERP P300 N400 research, Video integration, Raw Data Inspection, interactive ICA, FFT, Wavelets, LORETA, MR and CB artifact correction, Integration for eye-tracking data,CSD Current Source Density, Grand Average, Grand Segmentation, ERS/ERD Event-related synchronization and desynchronization, FFT Fast Fourier Transform, FFT Inverse, ICA Independent Component Analysis, Inverse ICA,Butterworth filter, Linear Derivation, LORETA for source analysis, Ocular Correction ICA based on ICA, PCA Principal Component Analysis, Segmentation,Topographic Interpolation, t-Test paired and unpaired t-Tests, Wavelets, Wavelet ExtractionFunctionalBESA Research:Data review and processing for reviewing and processing of your EEG or MEG data. Digital filtering: high, low, and narrow band pass, notch. Interpolation from recorded to virtual and source channels.Automated EOG and EKG artifact detection and correction. Advanced user-defined instantaneous artifact correction. Spectral analysis: FFT, DSA, power and phase mapping. Independent Component Analysis (ICA): Decomposition of EEG/MEG data into ICA components that can be used for artifact correction and as spatial sources in the source analysis window. Connectivity analysis, a unique feature for viewing brain activity, transforms surface signals into brain activity using source montages derived from multiple source models or beamformer imaging. This allows displaying ongoing EEG/MEG, single epochs, and averages with much higher spatial resolution. Source montages and 3D whole-head mapping. ERP analysis and averaging. Source localization and source imaging. Individual MRI and fMRI integration with BESA MRI and BrainVoyager. Source coherence and time-frequency analysis


Thumbnail

14:11:00 - 18:30:00

Money CreationValue and Social Value of MoneyCapitalism in the 21st centuryChicago Boys


Thumbnail

07:31:00 - 10:30:00

Decision Making


Thumbnail

18:30:00 - 22:45:00

Money CreationValue and Social Value of MoneyCapitalism in the 21st centuryChicago Boys


Thumbnail

10:30:00 - 14:11:00

Decision Making


Thumbnail

02:32:00 - 06:05:00

EEG Data AnalysisAnalyzer:Analysis software for EEG ERP P300 N400 research, Video integration, Raw Data Inspection, interactive ICA, FFT, Wavelets, LORETA, MR and CB artifact correction, Integration for eye-tracking data,CSD Current Source Density, Grand Average, Grand Segmentation, ERS/ERD Event-related synchronization and desynchronization, FFT Fast Fourier Transform, FFT Inverse, ICA Independent Component Analysis, Inverse ICA,Butterworth filter, Linear Derivation, LORETA for source analysis, Ocular Correction ICA based on ICA, PCA Principal Component Analysis, Segmentation,Topographic Interpolation, t-Test paired and unpaired t-Tests, Wavelets, Wavelet ExtractionFunctionalBESA Research:Data review and processing for reviewing and processing of your EEG or MEG data. Digital filtering: high, low, and narrow band pass, notch. Interpolation from recorded to virtual and source channels.Automated EOG and EKG artifact detection and correction. Advanced user-defined instantaneous artifact correction. Spectral analysis: FFT, DSA, power and phase mapping. Independent Component Analysis (ICA): Decomposition of EEG/MEG data into ICA components that can be used for artifact correction and as spatial sources in the source analysis window. Connectivity analysis, a unique feature for viewing brain activity, transforms surface signals into brain activity using source montages derived from multiple source models or beamformer imaging. This allows displaying ongoing EEG/MEG, single epochs, and averages with much higher spatial resolution. Source montages and 3D whole-head mapping. ERP analysis and averaging. Source localization and source imaging. Individual MRI and fMRI integration with BESA MRI and BrainVoyager. Source coherence and time-frequency analysis


* This is a social networking platform where blogs are made by customers and researchers.
* The content published here is the exclusive responsibility of the authors.


Autor: Jackson Cionek